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Abstract

 

In cardiac fibrillation, disorganized waves of electrical ac-
tivity meander through the heart, and coherent contractile
function is lost. We studied fibrillation in three stationary
forms: in human chronic atrial fibrillation, in a stabilized
form of canine ventricular fibrillation, and in fibrillation-
like activity in thin sheets of canine and human ventricular
tissue in vitro. We also created a computer model of fibrilla-
tion. In all four studies, evidence indicated that fibrillation
arose through a quasiperiodic stage of period and amplitude
modulation, thus exemplifying the “quasiperiodic transition
to chaos” first suggested by Ruelle and Takens. This sug-
gests that fibrillation is a form of spatio–temporal chaos, a
finding that implies new therapeutic approaches. (

 

J. Clin.
Invest. 
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Introduction

 

Ventricular fibrillation (VF)

 

1

 

 is the major cause of sudden car-
diac death; atrial fibrillation (AF), while not usually lethal,
also causes significant morbidity and mortality. In both types
of fibrillation, cardiac electrical activity becomes highly disor-
dered, and the heart ceases to contract coherently. Is this dis-
order random or deterministic? Although Sir Thomas Lewis
stated (1) that during fibrillation, “the pauses betwixt the beats
bear no relationship to one another,” recent studies of fibrilla-
tion have revealed organized behavior, consisting of propagat-
ing wavefronts meandering through the myocardium in com-
plex patterns (2, 3). High-resolution mapping and other studies
have detected local spatio–temporal correlations (3–5) and
other evidence of determinism (6) during fibrillation, suggest-
ing that the underlying process is not completely random. It is

therefore tempting to speculate that fibrillation is determinis-
tic chaos, especially since definitive evidence of chaos has been
found in some simpler cardiac arrhythmias (7–9).

This paper presents data suggesting that fibrillation is a
form of spatiotemporal chaos arising via a quasiperiodic transi-
tion. In this scenario, when an oscillatory process is modulated
by several additional oscillatory processes, the system destabi-
lizes and becomes chaotic.

 

Methods

 

The techniques of chaos theory require a physiologically stable prep-
aration unlike ventricular fibrillation in vivo, in which progressive is-
chemia causes the tissue to deteriorate rapidly. So we studied fibril-
lation in three stable biological models: chronic human atrial
fibrillation, stabilized canine ventricular fibrillation, and fibrillation-
like activity in thin sheets of canine and human ventricular epicar-
dium in vitro. In addition, we created a fibrillation-like state in a com-
puter model of cardiac propagation.

 

Human studies.

 

Five patients underwent clinical cardiac electro-
physiology study for clinical indications at Universiy of California,
Los Angeles (UCLA) Medical Center, and gave their informed con-
sent for the protocol approved by the UCLA Human Subjects Pro-
tection Committee (protocol 91-01-033). Intracardiac recordings
were made from the high right atrium using either standard octopolar
pacing catheters (1-mm interelectrode distance), or monophasic ac-
tion potential catheters. Recordings were digitized at 1 KHz and re-
corded directly to optical disk.

 

Canine ventricular fibrillation model.

 

The intact, excised heart of
a dog was perfused by cross-circulation from a second dog to main-
tain hemodynamic stability during fibrillation, as described previously
(10). Ventricular fibrillation was induced by a short burst of 60-Hz al-
ternating current. Unipolar electrograms recorded from a multielec-
trode plaque sutured to the epicardial surface of the ventricle were
digitized at 1 KHz and recorded to optical disk.

 

Right ventricular sheet preparation.

 

We adapted the right ventric-
ular epicardial sheet preparation described by Davidenko et al. (11),
consisting of a 1–2 mm thick slice of right ventricular epicardium, 

 

z

 

 25
mm in length and width, pinned down in a chamber and superfused
with oxygenated Tyrode’s solution at 37

 

8

 

C. Using an S1-S2 stimula-
tion protocol similar to that used to induce ventricular fibrillation in
the canine ventricle (12, 13), a reentrant arrhythmia consistent with a
persistent spiral wave was readily induced, but was very susceptible to
spontaneous termination and could not be induced to break up into
multiple reentrant wavefronts to simulate a fibrillation-like state.
However, after treatment with the ATP-sensitive K

 

1

 

- channel ago-
nist cromakalim (5–10 

 

m

 

M) to shorten the action potential duration
by 30–50% and reduce wavelength commensurately, a fibrillation-
like state could be induced. (Wavelength, defined as the product of
action potential duration and conduction velocity, has been shown to
be an important determinant of susceptibility to fibrillation [14]). In
the presence of cromakalim, transitions from organized periodic re-
entry to disorganized, irregular reentry were observed, either sponta-
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Abbreviations used in this paper:

 

 AF, atrial fibrillation; APD, ac-
tion potential duration; (dV/dt)

 

max

 

, maximal rate of rise of the action
potential upstroke; VF, ventricular fibrillation.
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neously (two preparations) or after pacing (one preparation). An ex-
tracellular bipolar electrogram (0.5-mm interpole distance) was
continuously recorded on tape and later digitized at 1 KHz and ana-
lyzed off line. Activation mapping was performed with a 509 bipolar
electrode array (interpolar distance 0.5 mm, interelectrode distance
1.6 mm), using a computerized mapping system (E-Map, Auckland,
NZ), as described previously (12, 13).

 

Analysis of electrograms.

 

Electrograms were analyzed off-line.
Activation spikes were identified in each trace by a computerized
peak-detecting algorithm whose parameters were typically adjusted
to recognize deflections exceeding 20% of the maximal spike ampli-
tude occurring 

 

.

 

 25 ms after the last spike. For the unipolar record-
ings during canine VF, the same criteria were applied to the first de-
rivative of the electrogram. The peaks selected by the algorithm were

Figure 1. Intracardiac elec-
trical activity during (A) hu-
man atrial fibrillation, (B) 
canine ventricular fibrilla-
tion, and (C) a fibrillation-
like state in sheets of iso-
lated canine or human right 
ventricular epicardium. Top 
row: Brief extract of local in-
tracardiac electrograms. 
Second row: series of inter-
activation intervals (In) mea-
sured from the electro-
grams, illustrating the irreg-
ular patterns characteristic 
of fibrillation. Third row: 
Poincaré interval plots of 
In11 against In, for the full 
data sets from which the up-
per rows are extracts. Fourth 
and fifth rows: Poincaré 
plots of In11 against In, in 
(A) two additional human 
patients with chronic atrial 
fibrillation, (B) two addi-
tional canine hearts, and (C) 
two additional epicardial 
sheet preparations, one ca-
nine (fourth row) and one 
human (fifth row). Note that 
in all three fibrillation mod-
els, the shortest interactiva-
tion intervals were in the 
range of 30–50 ms. This is 
less than estimates of the re-
fractory period during either 
atrial or ventricular fibrilla-
tion (65, 66), suggesting that 
the activations creating 
these short intervals result 
from less than fully devel-
oped action potentials or 
electrotonic events. These 
spikes may represent double 
potentials, which occur 
when the recording site is 
near the core of functional 
block of a reentrant wave-
front (67), or when a wave-
front generated by a second 
reentrant pathway collides 
nearby, producing an elec-
trotonic depolarization at 
the recording site (66). We 
did not attempt to exclude 
electrotonic depolariza-
tions, since they influence 
local excitability and hence 
propagation.
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visually inspected at multiple randomly chosen sections to confirm
accuracy.

Poincaré plots were constructed from interactivation intervals of
the electrograms by plotting the n

 

th

 

 interval against the (n

 

1

 

1)

 

st

 

.

 

Computer simulation.

 

The computer model consisted of an iso-
tropic 128 

 

3

 

 128 lattice of excitable elements (a cell model of the car-
diac action potential) coupled resistively, representing a rectangular
patch of cardiac tissue 4 cm on a side. Two types of cell models were
used: in some simulations, a modification of the Van Capelle/Durrer
two-variable model (15), and in others, a three-variable simplification
of the Luo/Rudy model (16). The parameters of these elements were
adjusted to produce physiologically realistic values of: action potential
duration (APD) 200 ms, maximal rate of rise of the action potential
upstroke (dV/dt)

 

max

 

 340 V/s, rectilinear conduction velocity 40 cm/s,
and restitution properties of APD and (dV/dt)

 

max

 

. The two-variable
model does not reproduce the restitution properties of (dV/dt)

 

max

 

while the three-variable model does. The explicit numerical integra-
tion algorithm for the two-variable model was a forward Euler with a
time step of 0.001 ms, and for the three-variable model, an Ashour-
Hanna method with time step 0.03 ms. The space step and the diffu-
sion coefficient were the same for both models, equaling 0.03 cm and
1.2 cm

 

2

 

/s, respectively. Simulations were performed on a massively
parallel computer (model CM-2; Thinking Machines, Inc., Cam-
bridge, MA).

 

Results

 

Poincaré plots.

 

In contrast to random behavior, deterministic
behavior means that the present state of a system is deter-
mined by its previous states. A simple test for such a relation-
ship is a Poincaré plot, in which each successive value of a sys-
tem variable is plotted against its previous value. For a purely
random system, the distribution of points on a Poincaré plot is
formless, whereas for a system with significant nonrandom ele-
ments, the points often form a distinct structure. We con-
structed Poincaré plots of interactivation intervals (joint in-
terval histograms of I

 

n

 

 vs. I

 

n

 

1

 

1

 

) during the three types of
fibrillation. These intervals were measured in extracellular
electrograms recorded directly at the myocardial surface. Elec-
trograms exhibit a spike each time a wave of membrane depo-
larization passes the electrode (Fig. 1, 

 

first row

 

); intervals be-
tween spikes are therefore a dynamic measure of local activity.
During atrial or ventricular tachycardia, interactivation inter-
vals are nearly constant, but during fibrillation they become
highly irregular (Fig. 1, 

 

second row

 

). In all three types of fibril-
lation, the Poincaré plots formed a distinctive pattern: a ring-
like structure consisting of a relatively empty, roughly circular

Figure 2. A. Poincaré plots 
of interactivation intervals 
(from the examples in Fig. 
1) in which lines have been 
drawn connecting successive 
points. Note that the lines 
tend to march around the 
perimeter rather than cross 
through the center of the 
ring-like structure, which 
implies a low-frequency 
modulation (20). B. Fourier 
spectra of interactivation in-
tervals from the same data 
sets, demonstrating the low-
frequency modulation as a 
statistically significant peak 
in the lowest frequency (20). 
C. Histograms demonstrat-
ing the presence of a hole in 
the center of the Poincaré 
plots in A. In B and C, the 
heavy black lines represent 
the actual data, while the 
shaded gray regions are the 
99% confidence intervals 
for the same data in ran-
domized order. Thus any 
part of the black line outside 
of the gray area is significant 
with P , 0.01.
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core region, surrounded by denser regions (Fig. 1, 

 

third
through fifth rows

 

). In a total of 19 different epochs of AF ana-
lyzed in five patients, 15 of the Poincaré plots showed visually
clear ring-like structures, present in at least one epoch in each
patient. In canine VF, ring-like structure was observed in 20 of
24 Poincaré plots constructed from 12 episodes of VF in the six

canine hearts. In the fibrillation-like state of the ventricular
epicardial sheet preparation (Fig. 1 

 

C

 

), Poincaré plots of inter-
activation intervals showed ring-like structures in all three
cases. The central hole in each ring-like structure was con-
firmed by spatial statistics (Fig. 2 

 

C

 

), adapting a standard test
(17), namely that if a hole exists, then few points will lie at
short radial distances from its center. We chose a center within
each ring in the data (some data sets had two rings), calculated
the distance from the center to each of the data points (for two
centers, we chose the smaller distance), and tallied those dis-
tances into a 20-bin histogram. We then shuffled the intervals,
reconstructed the Poincaré interval plot and calculated a new
histogram of distances. After 100 shuffles, every data set
showed at least one bin for short radii whose tally was less than
all 100 of the histograms of the shuffled data; thus, in all cases,
there is a statistically significant hole, with 

 

P

 

 

 

,

 

 0.01.
In the computer model (with the two-variable cell model),

using the same stimulus protocol that induced reentry in the
experimental preparations (12, 13), single or paired spiral
waves were readily induced (Fig. 3 

 

A

 

). Extra stimuli created
additional, meandering spiral waves, simulating a fibrillation-
like state (Fig. 3 

 

B

 

). In addition, using the three variable cell
model, the appropriate choice of electrophysiological parame-
ter values (see below) resulted in spiral wave breakup, sponta-
neously producing a fibrillation-like state (Fig. 3 

 

C–F

 

). Fig. 4
A–B show intracellular membrane potential (

 

A

 

) and its first
derivative (

 

B

 

) at a local site during the simulated fibrillation as
in Fig. 3 

 

B.

 

 A series of interactivation intervals from the full
record is shown in Fig. 4 

 

C

 

, its Poincaré plot in Fig. 4 

 

E

 

 and a
Poincaré map from a different simulation in Fig. 4 

 

I.

 

 As with
the experimental data, the Poincaré plots show clear ring-like
structures, confirmed by the same spatial statistics. Thus, the
computer model simulated key features observed during fibril-
lation in the various experimental models. In addition to the
analyses of the discrete series of intervals, we also used time-
delay embedding techniques (18, 19) to construct a continuous
three-dimensional trajectory of the intracellular membrane
potential at the same local site. A Poincaré section of this tra-
jectory is illustrated in Fig. 4 

 

G

 

, and shows a partial ring-like
structure, reflecting a broken torus (see below). Thus, equiva-
lent results were obtained using either the discrete set of inter-
activation intervals or a continuous flow.

 

Tests for quasiperiodicity.

 

The ring-like structures in the
Poincaré plots above suggest chaos that has arisen from quasi-
periodicity (18, 19). A system’s behavior is said to be quasipe-
riodic if it displays several independent frequencies, for example
an oscillation at one frequency that is amplitude-modulated at
another frequency. When a quasiperiodic system becomes cha-
otic, the quasiperiodic frequencies often remain detectable in
the chaotic regime (18, 19). One positive indication of quasipe-
riodicity in our fibrillation data is that lines connecting succes-
sive points of the Poincaré plot rarely cross the central hole;
instead, they march around its perimeter, indicating low-fre-
quency modulation of the intervals (Fig. 2 

 

A

 

). This quasiperi-
odicity was confirmed statistically by calculating Fourier spec-
tra of the interval sequences (Fig. 2 

 

B

 

; 20). The power density
was calculated between 0 to 0.5 cycles/activation spike, binned
into nine equal ranges. The statistical significance of the spec-
tra (heavy lines) was assessed by comparing it with 100 spectra
calculated for the same set of intervals, shuffled into pseudo
random order. The 1

 

st

 

 and 99

 

th

 

 percentiles of the values in each
frequency range for the shuffled data are indicated by the gray

Figure 3. Spiral wave breakup leading to a fibrillation-like state in 
the computer simulation. A–B. Pacing-induced breakup. A shows a 
pair of spiral waves shortly after their initiation by a 10 3 threshold 
premature pacing stimulus, delivered in the wake of a prior stimu-
lated excitation wave. Two additional pacing stimuli (sites of delivery 
indicated by stars) broke up the two spiral waves into multiple mean-
dering spiral waves (B). C–F. Spontaneous spiral wave breakup. C 
shows a single spiral wave immediately after its induction by a prema-
ture pacing stimulus, as in A. Note the variable wavelength (thickness 
of the red 1 green regions between the activation wavefront and 
waveback, equal to the product of the action potential duration and 
conduction velocity) along the arm of the spiral wave. In D, wave 
thickness has varied so much that the wave is about to break into two 
distinct pieces. In E, the original spiral wave and one of the broken 
ends form the cores of two counter-rotating spirals. The other broken 
end has migrated to the bottom edge and extinguished. After several 
repetitions of this scenario, the tissue reaches a fibrillation-like state 
in F.  Color code represents dV/dt, with red marking the action po-
tential upstroke, green the plateau, light blue the rapid repolarization 
phase, and dark blue, fully repolarized tissue. In the spontaneous 
breakup shown in C–F, the slope of the APD restitution curve is 
steeper than in A–B.
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shading. In all cases, statistically significant power appeared in
the low-frequency band around 0.2 cycles per activation, rep-
resenting modulation over 

 

z

 

 5 intervals.

 

Circle maps.

 

Several pathways from quasiperiodicity to
chaos have been described, such as torus breakdown (21) and
torus doubling. The main diagnostic criterion for the torus
breakdown pathway is the way in which the state point
progresses around the ring-like structure in the Poincaré plot
(Fig. 4 

 

D

 

). Choosing an origin within the ring, let 

 

θ

 

n

 

 be the po-
lar angle that the n

 

th

 

 point makes with that origin. In quasiperi-
odicity, the plot of 

 

θ

 

n

 

 against 

 

θ

 

n

 

1

 

1

 

 will be a monotonically in-
creasing function (modulo 2

 

p

 

), reflecting the steady precession
of the state point around the ring. In the transition to chaos,
this function (sometimes called a circle map) becomes non-
monotonic. Finally, as the chaos develops further, the 

 

θ

 

n

 

/

 

θ

 

n

 

1

 

1

 

plot ceases to be a function at all, and becomes a cloud of
points. Our computer simulations of fibrillation, as well as the
fibrillation-like state in the epicardial sheet preparation,
showed this sequence: Fig. 4, 

 

F

 

 and 

 

J

 

 show the plots of 

 

θ

 

n

 

 vs.

 

θ

 

n

 

1

 

1

 

 constructed from the Poincaré maps of interactivation in-
tervals in Fig. 4, 

 

E

 

 and 

 

I.

 

 

 

θ

 

n

 

1

 

1

 

 is approximately a single-valued
function of θn, but the nearly horizontal segment (p/2 , θn , p)
makes the relationship between θn and θn11 nonmonotonic and
hence noninvertible (i.e., there is no longer a unique value of
θn for each θn11). The plot of θn versus θn11 constructed from
the Poincaré section of the continuous three-dimensional tra-

jectory of membrane potential (Fig. 4 G) was also noninvert-
ible (Fig. 4 H). In the Poincaré plot from the epicardial sheet
tissue (Fig. 4 K), the θn vs. θn11 plot was roughly one-dimen-
sional and showed regions of noninvertibility (Fig. 4 L), thus
supporting the diagnosis of chaos that arose from a quasi-peri-
odic regime, via torus breakdown. In our data from human AF
and canine VF, however, phase angle relationships were too
thickened to determine whether θn and θn11 fell on a nonin-
vertible curve. In these cases, the findings are consistent with,
but not diagnostic of, fully developed chaos.

Lyapunov exponents. One defining feature of chaos is ex-
ponential divergence of nearby trajectories. To determine
whether this property could be detected in the fibrillation data,
we attempted to estimate Lyapunov characteristic exponents
in an appropriate delay-coordinate embedding (22). This re-
quires rejecting false nearest neighbors, which arise when the
embedding dimension is too low (23, 24). In our computer sim-
ulations, the percentage of false nearest neighbors dropped be-
low 2% at an embedding dimension of four. This was low
enough to permit estimating the largest Lyapunov exponent,
which was positive (range 0.08–0.14), indicating chaos. In the
biological fibrillation data, however, the proportion of false
nearest neighbors was too high, at any plausible embedding di-
mension, to allow reliable estimation of Lyapunov exponents.
We suspected that this was due to the limited precision of the
biological data, so we truncated the computer data to that pre-

Figure 4. Torus breakdown. 
A–B. Intracellular potential 
(A) and its first derivative 
(B) recorded at a local site 
during the fibrillation-like 
state of the computer simu-
lation, with multiple mean-
dering spiral waves. The first 
derivative simulates an ex-
tracellular electrogram, as 
recorded in Fig. 1. C. A se-
ries of successive interactiva-
tion intervals during the fi-
brillation-like state. D. 
Schematic diagram explain-
ing origin of ring-like struc-
tures in Poincaré sections of 
quasiperiodic behavior (18, 
19, 38). E and I. Poincaré 
plots of interactivation inter-
vals during two simulations 
of fibrillation. Note the simi-
larities to the ring-like struc-
ture in the Poincaré plots in 
Fig. 1. F and J. Plots of θn vs. 
θn11 for the interactivation 
interval plots in E and I. The 
θn/θn11 plots are noninvert-
ible functions, indicative of 
quasiperiodic chaos (see 
text). G. Poincaré section of 
the continuous three-dimen-
sional trajectory of intracel-

lular membrane potential (delay embedding with t 5 100 ms) from the data set represented in A. H. Plot of θn vs. θn11 for the Poincaré section in 
G. As in F, J, and L, the relationship between θn vs. θn11 is noninvertible. K and L. Poincaré plot of interactivation intervals (K) and θn vs. θn11 
(L) for canine epicardial sheet preparation. The polar angle plot also suggests a noninvertible relationship between θn vs. θn11.
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cision (z 0.5 ms). This truncated computer data, like the bio-
logical data, failed to meet the criterion of few enough false
nearest neighbors, and hence, its Lyapunov exponents could
not be estimated. This reveals a difficulty in applying tradi-
tional numerical measures, developed for diagnosing low di-
mensional chaos, to higher dimensional biological systems in
which data can be obtained with only limited accuracy (24–27).

Direct evidence of quasiperiodicity preceding fibrillation.
Direct evidence linking quasiperiodicity and fibrillation came
from the epicardial sheet preparations, in which we observed
the onset of fibrillation in several instances (Fig. 5). In two
cases, one from canine (Fig. 5 A) and one from human (Fig. 5

B) ventricular tissue, fibrillation was preceded by a long epoch
of periodic behavior (period-2 or alternans), which then be-
came unstable for a few seconds. The instability took the form
of growing oscillatory modulations in both amplitude and pe-
riod, followed by an abrupt transition to fibrillation. Because
this modulated behavior is quasiperiodicity, the tissue has in-
deed evolved from regularity, through quasiperiodicity, to cha-
otic fibrillation.

Activation maps. In the examples in Fig. 5, detailed spatial
activation maps were not obtained during the transition to fi-
brillation. Fig. 6 shows another experiment in which the activa-
tion sequence was mapped for 3.5 s during the transition from

Figure 5. Transition from periodic state 
(spiral-wave tachycardia) to a fibrillation-
like state in epicardial sheets prepared 
from canine (A) and human right ventricle 
(B). A.  After induction of sustained reen-
try in the presence of cromakalim (10 mM), 
the extracellular electrogram showed sta-
ble period-1 behavior (beginning of trace), 
until an external pacing stimulus (at s) 
shortened the cycle length. After an initial 
transient instability (indicated by overlying 
box), the accelerated beats settled into an 
alternating (period-2) pattern in both the 
amplitude and period (52 ms alternating 
with 45 ms) of the spikes. The period-2 pat-
tern continued for several minutes, evolv-
ing gradually with accentuation in the dif-
ference between amplitudes of the two 
spikes (right upper trace). However, at the 
second arrow (right upper trace), a slow 
modulation of the amplitude and period of 
the large spike began spontaneously (pe-
riod-2 1 modulation), leading to a sudden 
transition to highly aperiodic fibrillation-
like behavior (arrow, left lower trace). The 
fibrillation-like state persisted for several 
seconds before spontaneously reverting to 
the period-2 behavior (arrow, right lower 
trace). B. A similar sequence recorded 
from a human right ventricular epicardial 
sheet preparation in the presence of 10 mM 
cromakalim. In this example, the initial 
transition (arrow, upper trace) occurred 
spontaneously, taking the period-1 reen-
trant tachycardia (cycle length 130 ms) into 
period-2 behavior through a transient un-
settled period (indicated by the overlying 
box). The period-2 behavior then became 
progressively modulated (lower trace), re-
flected by a growing oscillation in the am-
plitude of the upward spikes (indicated by 
overlying box), leading to a sudden transi-
tion to the fibrillation-like state (arrow).
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a stable spiral wave to a brief nonsustained fibrillation-like
state. During the initial 2.3 s, the core of the spiral wave was
relatively stable, showing only a slight meander. At a recording
site distant from the core (electrode z), activations were mono-
morphic. Closer to the core, however (electrode x), an alter-
nating pattern was observed; at the margin of the core (elec-
trode y), the alternans was strongly modulated. We attribute
the latter modulation to the definite though slight meandering
motion of the core during successive rotations. We hypothe-
size that the multiple coupled oscillations at the core destabi-
lized the spiral wave because at 2.3 s, the spiral wave suddenly
began to meander violently, with the tip of the spiral wave
tracing the trajectory indicated in red in Fig. 6 J. This hyperme-
ander (28) led to termination of the spiral wave after only six
additional rotations; during this stage the electrograms at all
three sites became highly disordered, similar to those observed
during the fibrillation-like state in the examples in Fig. 5. Hy-
permeander of a single spiral wave has recently been shown in
the isolated rabbit heart to produce the electrocardiographic
pattern of fibrillation (29). Subsequent breakup of a single me-
andering spiral wave into multiple spiral waves may also occur

in sustained fibrillation. In the preparations in Fig. 5 B, crude
activation mapping during the fibrillation-like state showed
the presence of multiple circulating wavefronts (data not
shown). These experimental mapping results further support
the relevance of spiral-wave hypermeander and breakup in the
computer simulation to genuine cardiac fibrillation.

Spiral breakup. Unstable quasiperiodicity is also the cause
of spiral breakup leading to the fibrillation-like state in the
computer simulation. In Fig. 3 C–F, the wavelength of the exci-
tation wave (APD 3 conduction velocity) is shown by the
thickness of the red plus green areas. Shortly after initiation of
the spiral wave, the wavelength shows an oscillatory scalloping
(i.e., a quasiperiodic modulation of wavelength), as one moves
outward along the arm of the spiral wave (Fig. 3 C). This oc-
curs because the fundamental period of the spiral wave is too
short to allow full recovery of tissue in the path of the next
wavefront, so that (dV/dt)max and APD recover incompletely,
as determined by their restitution properties. As the spiral arm
rotates, this modulation of wavelength intensifies until finally,
at one location, the APD (and hence the wavelength) has be-
come too short to successfully propagate (Fig. 3 D). This

Figure 6. Activation map-
ping during the transition to 
a fibrillation-like state in a 
canine RV epicardial sheet 
preparation, measuring ap-
proximately 25 mm 3 25 
mm. A–D. Snapshots of the 
position of activation wave-
front at indicated intervals 
during one rotation of a spi-
ral wave (epoch f in E). Most 
recently activated sites are 
indicated by red, and the 
color changes from red to 
yellow to green to black ev-
ery 10 ms. Red line shows the 
leading edge of the spiral 
wave; white lines trace the 
path of the tip of the spiral 
wave. The mapping was per-
formed using an array of 509 
closely spaced bipolar elec-
trodes (12, 13). E. Represen-
tative electrograms from 
three sites (x, y, and z in F) 
during the 3.5 s duration of 
mapping. F. Isochronal acti-
vation map for the rotation 
of the spiral wave (epoch f in 
E) illustrated in A–D. The 
core of the spiral wave is the 
shaded area outlined by the 
white lines in D. G. Isochro-
nal activation map of the spi-
ral wave starting at 1,540 ms 

(epoch g) shows an almost identical pattern. H. At z 2450 ms, (epoch h) the spiral wave spontaneously began to meander rapidly; the isochronal 
activation map beginning at 2,600 ms shows that the core (red) has shifted to the left. The position of the original core is indicated by the gray 
shaded area. I. The isochronal activation map during the final rotation of the spiral wave (epoch i) which extinguishes when it runs into the upper 
border of the sheet (the path of the spiral tip is shown in red). J. The trajectory of the tip of the spiral wave (every 20 ms) during the transition 
from the stationary (black lines) to hypermeander (red lines) of the spiral wave. Note that during the stationary phase, slight but definite mean-
der of the tip trajectory was present (i.e., the black lines do not superimpose exactly).



312 Garfinkel et al.

pinches off the arm of the spiral wave, creating two new ends,
which form the tips of two new spiral waves (Fig. 3 E). This
breakup process repeats itself, producing the multiple, often
fractionated spiral waves, characteristic of the fully developed
fibrillation-like state (Fig. 3 F; 30).

Discussion

The quasiperiodic transition to chaos. The idea that multifre-
quency quasiperiodicity is inherently unstable, and will degen-
erate into chaos, was first suggested by Ruelle and Takens in
1971, in application to fluid turbulence. Classically, turbulence
was thought to result from the accumulation of many indepen-
dent oscillatory motions (31). This was shown to be mathemat-
ically impossible by Ruelle, Takens, and Newhouse (32, 33),
who proved that a system containing three or more coupled
oscillations is unstable. Their predictions were confirmed ex-
perimentally by the elegant fluid dynamics studies of Swinney
and others (34–36), and have been extended to other systems
such as electronic materials (37).

The quasiperiodic scenario explains the origin of the ring-
like structures seen in the Poincaré plots. Consider the state of
a quasiperiodic system consisting of two coupled oscillations.
The evolving state is represented by a point moving in a trajec-
tory on the surface of the doughnut-shaped 2-torus, T2, whose
two cyclic coordinates represent the two oscillations (18, 19,
38; Fig. 4 D). Suppose we sample this trajectory by sectioning
the torus with a plane, P, transverse to one of the cyclic coordi-
nates. If the behavior is periodic, the trajectory will intersect
the sectioning plane at a discrete set of points. But if the be-
havior is quasiperiodic, the trajectory intersects at an infinite
set of points that precess around a simple closed curve. If the
quasiperiodicity progresses to chaos, the ring-like structures
will thicken and/or break (18, 19). Thus, ring-like structures
around which the state point precesses (see below), such as ob-
served in our fibrillation data, suggest chaos that has arisen
from quasiperiodicity. Similar ring-like structures have been
observed in other physical systems undergoing transitions
from quasiperiodicity to chaos, such as the transition to turbu-
lence in fluids (34–36) and to chaos in electronic materials
(37). In addition, mathematical models, which, like cardiac
conduction, are governed by reaction-diffusion equations in
excitable media, have been shown to undergo transitions to
spatio-temporal chaos via a quasiperiodic route (39, 40). In
each of these cases, thickened and sometimes broken ring-like
structures were observed in Poincaré plots, like those observed
in our fibrillation data.

Since Ruelle and Taken’s original papers (32, 33), addi-
tional pathways from quasiperiodicity to chaos have been de-
scribed, such as torus breakdown and torus doubling. In fluid
turbulence, electronic materials and spatiotemporal chaos in
excitable media, the quasiperiodic transition to chaos often
takes place via a route that involves the chaotic destruction of
the torus (torus breakdown). This has a characteristic appear-
ance in the circle map, which records the progression of the
state point around the torus. If the state point is truly staying
on the surface of the torus, then the function relating the cur-
rent position to the previous must be constantly increasing, i.e.,
monotonic, reflecting the progression around the circle. If,
however, the point appeared to move backward on the circle,
i.e., a nonmonotonic circle map, that would indicate that the
state point is no longer in a deterministic flow on the surface of

a torus (18, 19). Such nonmonotonic (or noninvertible) circle
maps are found in each of the examples in the literature of the
torus breakdown scenario (34–37, 39, 40).

In our computer simulations, the evidence for a quasiperi-
odic transition to chaos via the torus breakdown route is deci-
sive: ring-like structure in the Poincaré plot, low-frequency
modulation, a transition to a noninvertible circle map, and pos-
itive Lyapunov exponent. The biological preparations also dis-
played Poincaré structure, low frequency period and ampli-
tude modulation, and, in the epicardial sheet preparation, a
nonmonotonic, noninvertible circle map; in addition, they con-
tained transitions to fibrillation, which were immediately pre-
ceded by short segments of unstable quasiperiodicity. Thus,
our findings provide the first experimental validation of this
scenario in a biological setting, and suggest that quasiperiodic
transitions may underlie spatiotemporal chaos in other excit-
able media which generate spiral waves, including chemical re-
actions (41) and Ca21 waves (42, 43).

Identifying the quasiperiodic oscillations. The biological re-
sults and computer simulations provide insight into the various
oscillations and modulations that constitute the quasiperiodic
scenario. The primary oscillation is a spiral wave, a rotating
wave of excitation that repeatedly reenters each region in its
path (11, 44–47). The second oscillation is alternans, which
arises because the cells in the path of the rotating spiral are be-
ing reexcited before they have completely recovered from the
previous excitation. Alternans due to rapid periodic forcing of
heart cells is well known (48). It is generally attributed to the
cellular property of restitution, which relates each action po-
tential duration (APD) or the maximal action potential up-
stroke velocity, (dV/dt)max, to the previous diastolic interval
(49), and hence to the driving rate. The third and fourth oscil-
lations in the quasiperiodic scenario are the period and ampli-
tude modulations that immediately precede and precipitate
the transition to chaos. They correspond to the onset of mean-
der of the primary spiral wave, which is mathematically a tran-
sition to quasiperiodicity, and has been shown to cause quasi-
periodic modulations of period and amplitude in heart tissue
(29, 50, 51). Theoretical studies of cardiac wave propagation in
one-dimensional rings of tissue (52) have attributed the onset
of quasiperiodicity to APD restitution and the restitution of
(dV/dt)max, and similar quasiperiodic modulations have been
observed in rings of cardiac tissue (53).

Limitations. True VF in vivo is more complicated than in
the two experimental ventricular preparations we have stud-
ied. In one preparation, the K1 channel opener cromakalim
was required to induce VF; in both preparations, VF was initi-
ated by external electrical stimulation rather than spontane-
ously, and destabilizing factors such as progressive ischemia
and increased sympathetic tone were absent. Avoiding these
nonstationary factors was essential for our methods. More
work will be necessary to assess the dynamic consequences of
these nonstationary factors, which are highly relevant to clini-
cal VF. Nonstationarity may have accounted for negative re-
sults in previous studies of chaos in VF, which have been
mixed (54–56). Two negative studies used preparations that
were hemodynamically unstable during fibrillation, and one
used chest-surface EKGs, which are averages over the spa-
tially disorganized activity, rather than local measures. The di-
rect relevance of our findings to human disease is supported by
the results in chronic human AF, in which the same hallmarks
of spatiotemporal chaos were observed as in our VF models.
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Another limitation is that the computer simulations were
simplified, and did not incorporate any anatomically based
spatial inhomogeneities (e.g., anisotropy) or randomness in
the electrophysiological properties of the tissue (e.g., disper-
sion of refractoriness; 2). On the other hand, the simulations
demonstrate that spiral wave breakup causing fibrillation by
the torus breakdown scenario can occur in the absence of
these factors. Although significant inhomogeneity exists in all
real hearts and may enhance the tendency of the heart to fibril-
late, it is not necessary as a prerequisite for fibrillation to de-
velop by the torus breakdown scenario.

Therapeutic implications. A quasiperiodic route to chaos,
as a cause of cardiac fibrillation, has specific therapeutic impli-
cations: strategies aimed at reducing or decoupling the oscilla-
tions may help prevent fibrillation. For example, clinical and
experimental studies have shown that electrocardiographic T
wave alternans is a precursor of ventricular arrhythmias, in-
cluding VF (57–62). We think it is likely that the R wave am-
plitude and period alternans preceding fibrillation in our local
electrograms was accompanied by alternans in repolarization,
given the typical overlap between (dV/dt)max and APD restitu-
tion curves in cardiac tissue. However, this point remains to be
proven, since we had no direct measure of repolarization in
these experiments. Nevertheless, our study strongly supports
previous evidence (62) that, rather than being an epiphenome-
non, alternans is causally important in the development of fi-
brillation. Therefore, pharmacologic or pacing methods (63) to
prevent or reduce alternans should have an antifibrillatory ef-
fect. In particular, the deactivation kinetics of delayed rectifier
potassium currents, recovery from inactivation of inward cur-
rents, and intracellular Ca21 cycling have been shown to be im-
portant determinants of restitution characteristics and alter-
nans in APD, and offer realistic targets for modification by
antiarrhythmic drugs. For example, previous studies have
shown that Ca21 channel blockers inhibit both electrical (T
wave) alternans and predisposition to ischemic VF (59, 61).
Pacing strategies based on chaos control theory have also been
shown to be effective in a simpler cardiac arrhythmia (64), and
may conceivably be adapted to fibrillation.
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